GENERATOR SPN

1 Hz to 1.3 MHz IEEE 488 IEC625Bus

CHARACTERISTICS

- Compact, attractively priced generator with wide frequency range from 1 Hz to 1.3 MHz High frequency stability Extremely low distortion Wide output-voltage range High spectral purity
Flat frequency response
Sinewave and squarewave outputs

Switch-selected output impedance Input for external sweep voltage (lin/log) Output voltage proportional to frequency Standardized octave and third-octave sequences selectable Easy to operate through microprocessor Options: IEC bus and balun

Characteristics

The Generator SPN is a programmable synthesizer whose sinewave output signal features a wide level range and low distortion. It is suitable both for use in computer-controlled test assemblies (photo below) and for manual operation. Due to its attractive price and remote-control capability via the IEC bus, the SPN finds a wide field of use in production, service, research and development. Since the SPN combines latest technology and modern circuit design, it is able to comply with the most exacting requirements in measurements, e.g. in acoustics and hifi technology. There is also a large number of other fields in which accurate frequencies are required, for instance in telemetry and physics or in mechanical control processes. In addition, the outputs of two SPN generators can be connected in parallel for measuring non-linear distortions.

Frequency. Modern synthesizer technology ensures highly accurate, crystal-referenced output frequencies from 1 Hz to 1.3 MHz with a frequency setting time of only 15 ms . The short setting time is important in computercontrolled test systems with a high measuring rate or for the generation of tone sequences such as those required for measurements on selective calling equipment. The frequency entered via the keyboard is read out on the display in five digits (smallest resolution: 0.1 Hz) with a floating decimal point. The frequency can be varied quasi-continuously using a rotary knob. The SPN offers another
convenient way of frequency variation by frequency jumps with selectable step size and by calling up the standard octave and third-octave sequences. Logarithmic frequency variation is possible by entering a multiplication or division factor between 1.00 and 2.00 .

Output level (sinewave output). Adjustable between 0.1 mV and 10 V with smallest resolution of 0.01 mV (depending on output impedance selected). The output level is read out in three digits with a floating decimal point on the level display (in $\mathrm{mV}, \mathrm{dBV}$ or dBm). The output level entered can also be varied quasi-continuously or in steps and it can be converted from one unit into another simply at the push of a button. The maximum output EMF is $10 \mathrm{~V}_{\text {rms }}$.
Distortion is as low as 0.03% in the frequency range from 50 Hz to 100 kHz , so that the SPN fulfils the most demanding requirements of the audio-frequency range.
Output impedance. The output impedance of the sinewave output can be selected between 600,50 and approximately 5Ω at the push of a button and thus be matched to the standard system impedances. The output impedance is linear and real, allowing the sinewave outputs of two SPN generators to be connected in parallel. The output level can be switched off at another push of the impedance button.
Squarewave output. In addition to the sinewave output, an output with a squarewave signal of the same frequency is available for driving digital circuits as well as for other measuring tasks; output level: TTL, positive.

External sweeping. The generator frequency can be swept in a linear or logarithmic mode over the entire frequency range or certain subranges - required sweep voltage 0 to 1.3 V . The logarithmic conversion is done internally. The sweep range is from 1 Hz up to the upper range limit which can be selected and is indicated on the diplay.

Range 1	1 Hz to 1.3000 kHz
2	1 Hz to 13.000 kHz
3	1 Hz to 130.00 kHz
4	1 Hz to 1300.0 kHz

Setting example: sweep range from 1 Hz to 130 kHz

Frequency-proportional output voltage. In the manual and remote control mode the SPN provides at the SWEEP socket a DC output voltage proportional to the frequency (0 to 1.3 V), the value of 1.3 V corresponding to the selected upper frequency limit (as in sweep mode). This output voltage can be used for plotting the measured curves, e.g. frequency responses, on $X Y$ recorders.

With logarithmic frequency variation the DC output voltage also varies logarithmically.

Test setup for frequency response recording using the generator's frequency-proportional DC voltage at the X input of the recorder

Options

For special applications the performance of the SPN Generator can be extended simply and at low cost.

Remote control. All settings of the Generator SPN can be made remotely using the IEC Bus option SPN-B4 which can easily be retrofitted. The short programming time makes the SPN suitable for use in automatic measuring assemblies and test systems.

Balun SPN-Z1. Used for feeding balanced line systems or amplifiers and for eliminating hum pickup in test setups; stepdown transformation, therefore low internal impedance (approx. 15Ω); mumetal-shielded, therefore immune to external interference fields.

Operation

High operating convenience. Thanks to the microprocessor control the SPN is easy to operate. Data entry is made via keys, the numerical value being entered first, then the unit. Quasi-analog settings are possible using the rotary knob.

Level setting

Output impedance

Storage facility. The SPN can store five complete instrument settings (memory addresses: 1 to 5). RCL recalls either complete settings or individual frequency or level settings.

Storage: complete setting
Recall: complete setting
level value only
frequency value only

Special functions. The frequency steps commonly used in acoustics (DIN 45401, ISO 266) are possible by calling up special functions:

for 1 st octave sequence
$(16 / 31.5 / 63 / 125 / \ldots \mathrm{Hz}$)
for 2 nd octave sequence
$22.4 / 45 / 90 / 180 / \ldots \mathrm{Hz}$)
for 1 st third-octave sequence
$(16620 / 2531.5 / \ldots \mathrm{Hz}$)
for 2 nd third-octave sequence
$(18 / 22.4 / 28 / 35.5 / \ldots \mathrm{Hz})$

The VAR knob allows the selected sequence to be stepped up or down.

Programming

Programming examples for the Process Controller PUC from Rohde \& Schwarz for setting the level, output impedance and frequency on the Generator SPN (address 11).

Setting of

level	IECOUT11,"9.85V"
output impedance	IECOUT11,"R5"
frequency	IECOUT11,"1.1303KH"

Several instructions in one program line
IECOUT11,"9.85V R5 1.1303KH"
IEC-bus commands. The setting instructions consist of data and a combination of two characters which are also the delimiter.

Function	Data	Instructions
Setting the frequencyin kHzin Hz for short transient timein kHz in Hz	max. 5 digits with or without decimal point	$\begin{aligned} & \mathrm{KH} \\ & \mathrm{HZ} \\ & \mathrm{KS} \\ & \mathrm{HS} \end{aligned}$
$\left.\begin{array}{l}\text { Setting the level } \\ \text { in } V \\ \text { in } \mathrm{mV} \\ \text { in } \mathrm{dBV} \\ \text { in } \mathrm{dBm}\end{array}\right\}$ Switching off the level	max. 3 digits with or without decimal point	V MV DV DM RØ
Switching on linear SWEEP range 1 range 2 range 3 range 4 Switching off SWEEP		$\begin{aligned} & \text { S1 } \\ & \text { S2 } \\ & \text { S3 } \\ & \text { S4 } \\ & \text { SØ } \end{aligned}$
Switching on logarithmic SWEEP range 1 range 2 range 3 range 4 Switching off log SWEEP		$\begin{aligned} & \text { L1 } \\ & \text { L2 } \\ & \text { L3 } \\ & \text { L4 } \\ & \text { LØ } \end{aligned}$
Setting the output impedance $\begin{array}{r} 600 \Omega \\ 50 \Omega \\ \approx 5 \Omega \end{array}$		$\begin{aligned} & \text { R6 } \\ & \text { R5 } \\ & \text { R1 } \end{aligned}$
Storing the complete setting		ST n
Recalling the complete setting		RC n
Recalling the frequency	n : storage location 1 to 5	$\begin{aligned} & \text { RCKH n } \\ & \text { RCHZ } n \end{aligned}$
Recalling the level		RCV n RCMV n RCDV n RCDM n
Switching on the special function	n : number of special function	RC n
Enabling service request		SR

Specifications

Distortion limits for maximum output EMF of $10 \mathrm{~V}_{\mathrm{rms}}$ ($\mathrm{k}=$ distortion)

Options	
IEC Bus SPN-B4	
System IEC 625 -1/IEEE 488	
Functions L4 $\begin{aligned} & \text { basic listener } \\ & \text { unaddress if }\end{aligned}$	
	T6 basic talker, serial poll, unaddress if MLA
	RL1 remote/local
	DC1 device clear
	SR1 service request
Connector 24-way female (Amphenol)	
Balun SPN-Z1	
Input.	BNC connector with coaxial cable (25 cm)
Output	4-mm knurled terminals
	(telephone jacks)
Frequency range	30 Hz to 100 kHz
No-load transformation ratio	3.16 : 1 corresponding to $-10 \mathrm{~dB}(\pm 0.1 \mathrm{~dB})$
Asymmetry of output voltage	
from 30 Hz to 15 kHz . .	$<0.1 \mathrm{~dB}$
up to 20 kHz .	$<0.2 \mathrm{~dB}$
up to 30 kHz .	$<0.3 \mathrm{~dB}$
up to 100 kHz and symmetri	
about centre tap of load	
impedance	$<0.5 \mathrm{~dB}$
Source impedance.	$\approx 15 \Omega$
Permissible load impedance.	$\geqq 150 \Omega$
Distortion	$<0.2 \%$ (with source voltage of $10 \mathrm{~V}_{\text {rms max }}$ and $\mathrm{Z}_{\text {out }}=50 \Omega$)
Frequency response flatness of output level	
up to 30 kHz	$< \pm 0.2 \mathrm{~dB}$
up to 100 kHz	$< \pm 1 \mathrm{~dB}$
Max. permissible primary voltage	
10 to 30 Hz $5 \mathrm{~V}_{\text {rm }}$	
30 to 60 Hz $15 \mathrm{~V}_{\text {rms }}$	
60 Hz to $100 \mathrm{kHz}32 \mathrm{~V}_{\text {rms }}$	
Dimensions, weight	$83 \mathrm{~mm} \times 130 \mathrm{~mm} \times 105 \mathrm{~mm}, 1.5 \mathrm{~kg}$

General data

Ordering information

Order designation Generator SPN
336.3019.02
Accessories supplied. power cable, manual

Recommended extras

Options:
IEC Bus SPN-B4 265.4019 .02
19" Adapter ZZA-23 078.8397 .00
${ }^{1}$) $\mathrm{dBc}=$ relative level, referred to carrier amplitude

